The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration

Author:

Allen Gilman B.,Leclair Timothy,Cloutier Mary,Thompson-Figueroa John,Bates Jason H. T.

Abstract

Reopening the injured lung with deep inflation (DI) and positive end-expiratory pressure (PEEP) likely depends on the duration and severity of acute lung injury (ALI), key features of which include increased alveolar permeability and fibrin accumulation. We hypothesized that the response to DI and PEEP would worsen as ALI evolves and that this would correspond with increasing accumulation of alveolar fibrin. C57BL/6 mice were anesthetized and aspirated 75 μl of HCl (pH 1.8) or buffered normal saline. Subgroups were reanesthetized 4, 14, 24, and 48 h later. Following DI, tissue damping (G) and elastance (H) were measured periodically at PEEP of 1, 3, and 6 cmH2O, and air within the lung (thoracic gas volume) was quantified by microcomputed tomography. Following DI, G and H increased with time during progressive lung derecruitment, the latter confirmed by microcomputed tomography. The rise in H was greater in acid-injured mice than in controls ( P < 0.05) and also increased from 4 to 48 h after acid aspiration, reflecting progressively worsening injury. The rise in H was reduced by PEEP, but this effect was significantly blunted by 48 h ( P < 0.05), also confirmed by thoracic gas volume. Lung permeability and alveolar fibrin also increased over the 48-h study period, accompanied by increasing levels and transcription of the fibrinolysis inhibitor plasminogen activator inhibitor-1. Lung injury worsens progressively in mice during the 48 h following acid aspiration. This injury manifests as progressively increasing alveolar instability, likely due to surfactant dysfunction caused by increasing levels of alveolar protein and fibrin.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3