Pulmonary impedance and alveolar instability during injurious ventilation in rats

Author:

Allen Gilman B.,Pavone Lucio A.,DiRocco Joseph D.,Bates Jason H. T.,Nieman Gary F.

Abstract

The mechanical derangements in the acutely injured lung have long been ascribed, in large part, to altered mechanical function at the alveolar level. This has not been directly demonstrated, however, so we investigated the issue in a rat model of overinflation injury. After thoracotomy, rats were mechanically ventilated with either 1) high tidal volume (Vt) or 2) low Vt with periodic deep inflations (DIs). Forced oscillations were used to measure pulmonary impedance every minute, from which elastance ( H) and hysteresivity (η) were derived. Subpleural alveoli were imaged every 15 min using in vivo video microscopy. Cross-sectional areas of individual alveoli were measured at peak inspiration and end exhalation, and the percent change was used as an index of alveolar instability (%I-EΔ). Low Vt never led to an increase in %I-EΔ but did result in progressive atelectasis that coincided with an increase in H but not η. DI reversed atelectasis due to low Vt, returning H to baseline. %I-EΔ, H, and η all began to rise by 30 min of high Vt and were not reduced by DI. We conclude that simultaneous increases in both H and η are reflective of lung injury in the form of alveolar instability, whereas an isolated and reversible increase in H during low Vt reflects merely derecruitment of alveoli.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3