Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury

Author:

Allen Gilman1,Bates Jason H. T.1

Affiliation:

1. Department of Medicine, Vermont Lung Center, University of Vermont, Burlington, Vermont 05405

Abstract

In a previous study (Allen G, Lundblad LK, Parsons P, and Bates JH. J Appl Physiol 93: 1709-1715 , 2002), our laboratory used deep inflations (DI) in mice to show that recruitment of closed lung units can be a very transient phenomenon in lung injury. The purpose of this study was to investigate how this transience of lung recruitment depends on the nature and degree of acute lung injury. Mice were administered 50 μl of either saline ( n = 8), 0.01 M ( n = 9) or 0.025 M ( n = 8) hydrochloric acid, or 50 μg ( n = 10) or 150 μg ( n = 6) of LPS and were mechanically ventilated 24-48 h later. At various levels of positive end-expiratory pressure, two DIs were delivered, and forced oscillations were used to obtain a measure of lung stiffness ( H) periodically over 7 min. After LPS exposure, pressure-volume curve hysteresis and recovery in H after DI were no different from saline-exposed controls despite 500 times more neutrophils in bronchoalveolar lavage fluid. Pressure-volume hysteresis and recovery in H were increased in acid-exposed mice ( P < 0.001) and were correlated with bronchoalveolar lavage fluid protein content ( R = 0.81). Positive end-expiratory pressure reduced recovery in H in all groups ( P < 0.01) but reduced pressure-volume hysteresis in the acid-injured groups only ( P < 0.001). We conclude that the effects of DIs in acute lung injury depend on the degree of lung injury but only to the extent that this injury reflects a disruption of the air-liquid interface.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3