Optimization of rail profile design for high-speed lines based on Gaussian function correction method

Author:

Qi Yayun1ORCID,Dai Huanyun2,Gan Feng2,Sang Hutang2ORCID

Affiliation:

1. School of Mechanotronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, China

2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

Abstract

As high-speed trains operate at a higher speed, the problem of rail wear is more serious. In this paper, a new Gaussian function correction (GFC) method is proposed to design the new rail profile, two parameters are introduced to control the removal area. Then a high-speed train vehicle dynamic model is established, the Kriging surrogate model (KSM) is used to reduce the number of simulations and the Non dominated sorting genetic algorithm-II (NSGA-II) algorithm is used to optimize the rail profile. Finally, the dynamic characteristics and wheel/rail wear evolution of the optimized profile are analyzed. The results show that the dynamic performance of the optimized rail profile has been improved. The maximum wear depth of the optimized rail profile is reduced by 15.63% when passing a total weight of 16 Mt. The wheel wear depth of S1002CN profile contact with CHN60OPT is reduced by 4.8%. The proposed GFC method can quickly generate a new rail profile and has good engineering significance for rail grinding. The GFC-KSM-NSGA- II method can be used to optimize the rail profiles for high-speed lines, and it can further guide the operation and maintenance.

Funder

the National Natural Science Foundation of China

National Natural Science Foundation of China

the Youth Science Fund of Sichuan Natural Science Foundation

the Basic Natural Science and Frontier Technology Research Program of Chongqing Municipal Science and Technology Commission

the open project of Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3