Role of hPHF1 in H3K27 Methylation and Hox Gene Silencing

Author:

Cao Ru12,Wang Hengbin12,He Jin12,Erdjument-Bromage Hediye3,Tempst Paul3,Zhang Yi12

Affiliation:

1. Howard Hughes Medical Institute

2. Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295

3. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10021

Abstract

ABSTRACT Polycomb group (PcG) proteins are required for maintaining the silent state of the homeotic genes and other important developmental regulators. The silencing function of the PcG proteins has been linked to their intrinsic histone modifying enzymatic activities. The EED-EZH2 complex, containing the core subunits EZH2, EED, SUZ12, and RbAp48, functions as a histone H3K27-specific methyltransferase. Here we describe the identification and characterization of a related EED-EZH2 protein complex which is distinguished from the previous complex by the presence of another PcG protein, hPHF1. Consistent with the ability of hPHF1 to stimulate the enzymatic activity of the core EED-EZH2 complex in vitro, manipulation of mPcl1, the mouse counterpart of hPHF1, in NIH 3T3 cells and cells of the mouse male germ cell line GC1spg results in global alteration of H3K27me2 and H3K27me3 levels and Hox gene expression. Small interfering RNA-mediated knockdown of mPcl1 affects association of the Eed-Ezh2 complex with certain Hox genes, such as HoxA10, as well as Hox gene expression concomitant with an alteration on the H3K27me2 levels of the corresponding promoters. Therefore, our results reveal hPHF1 as a component of a novel EED-EZH2 complex and demonstrate its important role in H3K27 methylation and Hox gene silencing.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3