Blood Plasma Circulating DNA-Protein Complexes: Involvement in Carcinogenesis and Prospects for Liquid Biopsy of Breast Cancer

Author:

Shefer Aleksei1ORCID,Tutanov Oleg2,Belenikin Maxim3,Tsentalovich Yuri P.4ORCID,Tamkovich Svetlana1ORCID

Affiliation:

1. V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia

2. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA

3. Evogen LLC, 115191 Moscow, Russia

4. International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract

Circulating DNA (cirDNA) is a promising tool in translational medicine. However, studies of cirDNA have neglected its association with proteins, despite ample evidence that this interaction may affect the fate of DNA in the bloodstream and its molecular functions. The goal of the current study is to shed light on the differences between the proteomic cargos of histone-containing nucleoprotein complexes (NPCs) from healthy female (HFs) and breast cancer patients (BCPs), and to reveal the proteins involved in carcinogenesis. NPCs were isolated from the blood samples of HFs and BCPs using affinity chromatography. A total of 177 and 169 proteins were identified in NPCs from HFs and BCPs using MALDI-TOF mass spectrometry. A bioinformatics analysis revealed that catalytically active proteins, as well as proteins that bind nucleic acids and regulate the activity of receptors, are the most represented among the unique proteins of blood NPCs from HFs and BCPs. In addition, the proportion of proteins participating in ion channels and proteins binding proteins increases in the NPCs from BCP blood. However, the involvement in transport and signal transduction was greater in BCP NPCs compared to those from HFs. Gene ontology term (GO) analysis revealed that the NPC protein cargo from HF blood was enriched with proteins involved in the negative regulation of cell proliferation, and in BCP blood, proteins involved in EMT, invasion, and cell migration were observed. The combination of SPG7, ADRB1, SMCO4, PHF1, and PSMG1 NPC proteins differentiates BCPs from HFs with a sensitivity of 100% and a specificity of 80%. The obtained results indirectly indicate that, in tandem with proteins, blood cirDNA is an important part of intercellular communication, playing a regulatory and integrating role in the physiology of the body.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3