Role of transcriptomic and genomic analyses in improving the comprehension of cefiderocol activity in Acinetobacter baumannii

Author:

Stracquadanio Stefano1ORCID,Nicolosi Alice1,Privitera Grete Francesca2,Massimino Mariacristina3,Marino Andrea4,Bongiorno Dafne1,Stefani Stefania1ORCID

Affiliation:

1. Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, Italy

2. Department of Clinical and Experimental Medicine, Unit of Math and Comp Science, University of Catania, Catania, Italy

3. Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

4. Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, Catania, Italy

Abstract

ABSTRACT The mechanisms of action and resistance of cefiderocol (FDC) in Acinetobacter baumannii are still not fully elucidated, but iron transport systems have been evoked in its entry into the cell to reach the penicillin-binding proteins (PBPs). To capture the dynamics of gene expression related to FDC action in various conditions, we report on the genomic and transcriptomic features of seven A. baumannii strains with different FDC susceptibility, focusing on the variants in genes associated with β-lactam resistance and the expression of the siderophore biosynthesis and transport systems acinetobactin and baumannoferrin. We also investigated the expression of the TonB energy transduction system (ETS) and siderophore receptors piu A and pir A. The four clinical samples belonged to the same clonal complex (CC2), and the two strains with the highest FDC MICs showed peculiar variants in PBP2 and amp C. Similarly, the two clinical strains with the lowest MICs shared variants in an outer membrane protein as well as amp C. Gene expression analyses highlighted the up-regulation of the acinetobactin and baumannoferrin genes in response to iron depletion and a down-regulation in the presence of high iron concentrations. In response to FDC, gene expression seemed strain-dependent, probably due to the different metabolic features of each strain. Overall, FDC activates the ETS, confirming the active import of the drug; baumannoferrin, more than acinetobactin, appeared stimulated by FDC in an iron-depleted medium. In conclusion, iron transport systems play a clear role in the FDC uptake, and their expression likely contributes to MIC variation together with β-lactam resistance determinants. IMPORTANCE Acinetobacter baumannii poses a threat to healthcare due to its ability to give difficult-to-treat infections as a consequence of our shortage of antibiotic molecules active on this multidrug-resistant bacterium. Cefiderocol (FDC) represents one of the few drugs active on A. baumannii, and to preserve its activity, this study explored the transcriptomic and genomic features of seven strains with varying susceptibility to FDC. Transcriptomic analyses revealed the different effects of FDC on iron transport systems, promoting mainly baumannoferrin expression—thus more likely related to FDC entry—and the energy transduction systems. These findings suggest that not all iron transport systems are equally involved in FDC entry into A. baumannii cells. Finally, mutations in PBPs and β-lactamases may contribute to the resistance onset. Overall, the study sheds light on the importance of iron availability and metabolic differences in FDC resistance, offering insights into understanding the evolution of resistance in A. baumannii strains.

Funder

Ministero dell'Università e della Ricerca

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3