Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database

Author:

Avdeef Alex

Abstract

The accurate prediction of solubility of drugs is still problematic. It was thought for a long time that shortfalls had been due the lack of high-quality solubility data from the chemical space of drugs. This study considers the quality of solubility data, particularly of ionizable drugs. A database is described, comprising 6355 entries of intrinsic solubility for 3014 different molecules, drawing on 1325 citations. In an earlier publication, many factors affecting the quality of the measurement had been discussed, and suggestions were offered to improve ways of extracting more reliable information from legacy data. Many of the suggestions have been implemented in this study. By correcting solubility for ionization (i.e., deriving intrinsic solubility, S0) and by normalizing temperature (by transforming measurements performed in the range 10-50 °C to 25 °C), it can now be estimated that the average interlaboratory reproducibility is 0.17 log unit. Empirical methods to predict solubility at best have hovered around the root mean square error (RMSE) of 0.6 log unit. Three prediction methods are compared here: (a) Yalkowsky’s general solubility equation (GSE), (b) Abraham solvation equation (ABSOLV), and (c) Random Forest regression (RFR) statistical machine learning. The latter two methods were trained using the new database. The RFR method outperforms the other two models, as anticipated. However, the ability to predict the solubility of drugs to the level of the quality of data is still out of reach. The data quality is not the limiting factor in prediction. The statistical machine learning methodologies are probably up to the task. Possibly what’s missing are solubility data from a few sparsely-covered chemical space of drugs (particularly of research compounds). Also, new descriptors which can better differentiate the factors affecting solubility between molecules could be critical for narrowing the gap between the accuracy of the prediction models and that of the experimental data.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics,Chemistry (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3