3D-SMGE: a pipeline for scaffold-based molecular generation and evaluation

Author:

Xu Chao12ORCID,Liu Runduo3,Huang Shuheng12,Li Wenchao3,Li Zhe3ORCID,Luo Hai-Bin12

Affiliation:

1. Key Laboratory of Tropical Biological Resources of Ministry of Education , School of Pharmaceutical Sciences, , Haikou 570228, Hainan , P.R. China

2. Hainan University , School of Pharmaceutical Sciences, , Haikou 570228, Hainan , P.R. China

3. School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou, 510000, Guangdong , P.R. China

Abstract

Abstract In the process of drug discovery, one of the key problems is how to improve the biological activity and ADMET properties starting from a specific structure, which is also called structural optimization. Based on a starting scaffold, the use of deep generative model to generate molecules with desired drug-like properties will provide a powerful tool to accelerate the structural optimization process. However, the existing generative models remain challenging in extracting molecular features efficiently in 3D space to generate drug-like 3D molecules. Moreover, most of the existing ADMET prediction models made predictions of different properties through a single model, which can result in reduced prediction accuracy on some datasets. To effectively generate molecules from a specific scaffold and provide basis for the structural optimization, the 3D-SMGE (3-Dimensional Scaffold-based Molecular Generation and Evaluation) work consisting of molecular generation and prediction of ADMET properties is presented. For the molecular generation, we proposed 3D-SMG, a novel deep generative model for the end-to-end design of 3D molecules. In the 3D-SMG model, we designed the cross-aggregated continuous-filter convolution (ca-cfconv), which is used to achieve efficient and low-cost 3D spatial feature extraction while ensuring the invariance of atomic space rotation. 3D-SMG was proved to generate valid, unique and novel molecules with high drug-likeness. Besides, the proposed data-adaptive multi-model ADMET prediction method outperformed or maintained the best evaluation metrics on 24 out of 27 ADMET benchmark datasets. 3D-SMGE is anticipated to emerge as a powerful tool for hit-to-lead structural optimizations and accelerate the drug discovery process.

Funder

National Natural Science Foundation of China

Research Project

Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3