Mechanistically transparent models for predicting aqueous solu¬bility of rigid, slightly flexible, and very flexible drugs (MW<2000) Accuracy near that of random forest regression Alex Avdeef

Author:

Avdeef AlexORCID

Abstract

Yalkowsky’s General Solubility Equation (GSE), with its three fixed constants, is popular and easy to apply, but is not very accurate for polar, zwitterionic, or flexible molecules. This review examines the findings of a series of studies, where we have sought to come up with a better prediction model, by comparing the performances of the GSE to Abraham’s Solvation Equation (ABSOLV), and Random Forest regression (RFR) machine-learning (ML) method. Large, well-curated aqueous intrinsic solubility databases are available. However, drugs may be sparsely distributed in chemical space, concentrated in clusters. Even a large database might overlook some regions. Test compounds from under-represented portions of space may be poorly predicted, as might be the case with the ‘loose’ set of 32 drugs in the Second Solubility Challenge (2020). There appears to be still a need for better coverage of drug space. Increasingly, current trends in predictions of solubility use calculated input descriptors, which may be an advantage for exploring properties of molecules yet to be synthesized. The risk may be that overall prediction approaches might be based on accumulated uncertainty. The increasing use of ML/AI methods can lead to accurate predictions, but such predictions may not readily suggest the strategies to pursue in selecting yet-to-be-synthesized compounds. Based on our latest findings, we recommend predictions based on both ‘grouped’ ABSOLV(GRP) and ‘Flexible Acceptor’ GSE(Φ,B) models with the provided best-fit parameters, where Φ is the Kier molecular flexibility index and B is the Abraham H-bond acceptor strength. For molecules with Φ < 11, the prudent choice is to pick the Consensus Model, the average of ABSOLV(GRP) and GSE(Φ,B). For more flexible molecules, GSE(Φ,B) is recommended.

Publisher

International Association of Physical Chemists (IAPC)

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics,Chemistry (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3