Explore the interaction between root metabolism and rhizosphere microbiota during the growth of Angelica sinensis

Author:

Chen Jing-Mei,Feng Wei-Meng ,Yan Hui,Liu Pei,Zhou Gui-Sheng,Guo Sheng,Yu Guang ,Duan Jin-Ao

Abstract

Angelica sinensis is a medicinal plant widely used to treat multiple diseases in Asia and Europe, which contains numerous active components with therapeutic value. The interaction between root and rhizosphere microorganisms is crucial for the growth and quality formation of medicinal plants. But the micro-plant-metabolite regulation patterns for A. sinensis remain largely undetermined. Here, we collected roots and rhizosphere soils from A. sinensis in seedling stage (M) and picking stage (G), respectively cultivated for one year and two years, generated metabolite for roots, microbiota data for rhizospheres, and conducted a comprehensive analysis. Changes in metabolic and microbial communities of A.sinensis over growth were distinct. The composition of rhizosphere microbes in G was dominated by proteobacteria, which had a strong correlation with the synthesis of organic acids, while in M was dominated by Actinobacteria, which had a strong correlation with the synthesis of phthalide and other organoheterocyclic compounds, flavonoids, amines, and fatty acid. Additionally, co-occurrence network analysis identified that Arthrobacter was found to be strongly correlated with the accumulation of senkyunolide A and n-butylidenephthalide. JGI 0001001.H03 was found to be strongly correlated with the accumulation of chlorogenic acid. Based on rhizosphere microorganisms, this study investigated the correlation between root metabolism and rhizosphere microbiota of A. sinensis at different growth stages in traditional geoherb region, which could provide references for exploring the quality formation mechanism of A. sinensis in the future.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3