An ABC Transporter Mutation Alters Root Exudation of Phytochemicals That Provoke an Overhaul of Natural Soil Microbiota

Author:

Badri Dayakar V.1,Quintana Naira1,El Kassis Elie G.1,Kim Hye Kyong1,Choi Young Hae1,Sugiyama Akifumi1,Verpoorte Robert1,Martinoia Enrico1,Manter Daniel K.1,Vivanco Jorge M.1

Affiliation:

1. Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture (D.V.B., E.G.E.K., A.S., J.M.V.), and Department of Chemistry (N.Q.), Colorado State University, Fort Collins, Colorado 80523; Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, 2300 Leiden, The Netherlands (H.K.K., Y.H.C., R.V.); Zurich-Basel Plant Science Center, Insti

Abstract

Abstract Root exudates influence the surrounding soil microbial community, and recent evidence demonstrates the involvement of ATP-binding cassette (ABC) transporters in root secretion of phytochemicals. In this study, we examined effects of seven Arabidopsis (Arabidopsis thaliana) ABC transporter mutants on the microbial community in native soils. After two generations, only the Arabidopsis abcg30 (Atpdr2) mutant had significantly altered both the fungal and bacterial communities compared with the wild type using automated ribosomal intergenic spacer analysis. Similarly, root exudate profiles differed between the mutants; however, the largest variance from the wild type (Columbia-0) was observed in abcg30, which showed increased phenolics and decreased sugars. In support of this biochemical observation, whole-genome expression analyses of abcg30 roots revealed that some genes involved in biosynthesis and transport of secondary metabolites were up-regulated, while some sugar transporters were down-regulated compared with genome expression in wild-type roots. Microbial taxa associated with Columbia-0 and abcg30 cultured soils determined by pyrosequencing revealed that exudates from abcg30 cultivated a microbial community with a relatively greater abundance of potentially beneficial bacteria (i.e. plant-growth-promoting rhizobacteria and nitrogen fixers) and were specifically enriched in bacteria involved in heavy metal remediation. In summary, we report how a single gene mutation from a functional plant mutant influences the surrounding community of soil organisms, showing that genes are not only important for intrinsic plant physiology but also for the interactions with the surrounding community of organisms as well.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 231 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3