A Hybrid RSM-ANN-GA Approach on Optimization of Ultrasound-Assisted Extraction Conditions for Bioactive Component-Rich Stevia rebaudiana (Bertoni) Leaves Extract

Author:

Ameer KashifORCID,Ameer Saqib,Kim Young-Min,Nadeem Muhammad,Park Mi-KyungORCID,Murtaza Mian AnjumORCID,Khan Muhammad Asif,Nasir Muhammad Adnan,Mueen-ud-Din Ghulam,Mahmood Shahid,Kausar Tusneem,Abubakar MuhammadORCID

Abstract

Stevia rebaudiana (Bertoni) leaves consist of dietetically important diterpene steviol glycosides (SGs): stevioside (ST) and rebaudioside-A (Reb-A). ST and Reb-A are key sweetening compounds exhibiting a sweetening potential of 100 to 300 times more intense than that of table sucrose. Ultrasound-assisted extraction (UAE) of SGs was optimized by effective process optimization techniques, such as response surface methodology (RSM) and artificial neural network (ANN) modeling coupled with genetic algorithm (GA) as a function of ethanol concentration (X1: 0–100%), sonication time (X2: 10–54 min), and leaf–solvent ratio (X3: 0.148–0.313 g·mL−1). The maximum target responses were obtained at optimum UAE conditions of 75% (X1), 43 min (X2), and 0.28 g·mL−1 (X3). ANN-GA as a potential alternative indicated superiority to RSM. UAE as a green technology proved superior to conventional maceration extraction (CME) with reduced resource consumption. Moreover, UAE resulted in a higher total extract yield (TEY) and SGs including Reb-A and ST yields as compared to those that were obtained by CME with a marked reduction in resource consumption and CO2 emission. The findings of the present study evidenced the significance of UAE as an ecofriendly extraction method for extracting SGs, and UAE scale-up could be employed for effectiveness on an industrial scale. These findings evidenced that the UAE is a high-efficiency extraction method with an improved statistical approach.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3