Targeted Inactivation of Kinesin-1 in Pancreatic β-Cells In Vivo Leads to Insulin Secretory Deficiency

Author:

Cui Ju1,Wang Zai1,Cheng Qianni2,Lin Raozhou1,Zhang Xin-Mei1,Leung Po Sing2,Copeland Neal G.3,Jenkins Nancy A.3,Yao Kwok-Ming1,Huang Jian-Dong1

Affiliation:

1. Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong;

2. Department of Physiology, The Chinese University of Hong Kong, Hong Kong;

3. Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.

Abstract

OBJECTIVE Suppression of Kinesin-1 by antisense oligonucleotides, or overexpression of dominant-negative acting kinesin heavy chain, has been reported to affect the sustained phase of glucose-stimulated insulin secretion in β-cells in vitro. In this study, we examined the in vivo physiological role of Kinesin-1 in β-cell development and function. RESEARCH DESIGN AND METHODS A Cre-LoxP strategy was used to generate conditional knockout mice in which the Kif5b gene is specifically inactivated in pancreatic β-cells. Physiological and histological analyses were carried out in Kif5b knockout mice as well as littermate controls. RESULTS Mice with β-cell specific deletion of Kif5b (Kif5bfl/−:RIP2-Cre) displayed significantly retarded growth as well as slight hyperglycemia in both nonfasting and 16-h fasting conditions compared with control littermates. In addition, Kif5bfl/−:RIP2-Cre mice displayed significant glucose intolerance, which was not due to insulin resistance but was related to an insulin secretory defect in response to glucose challenge. These defects of β-cell function in mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or β-cell size. However, compared with controls, pancreas of Kif5bfl/−:RIP2-Cre mice exhibited both reduced islet size and increased islet number, concomitant with an increased insulin vesicle density in β-cells. CONCLUSIONS In addition to being essential for maintaining glucose homeostasis and regulating β-cell function, Kif5b may be involved in β-cell development by regulating β-cell proliferation and insulin vesicle synthesis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3