The Maize Mixed-Linkage (1→3),(1→4)-β-d-Glucan Polysaccharide Is Synthesized at the Golgi Membrane

Author:

Carpita Nicholas C.1,McCann Maureen C.1

Affiliation:

1. Department of Botany and Plant Pathology (N.C.C.) and Department of Biological Sciences (M.C.M.), Bindley Biosciences Center, Purdue University, West Lafayette, Indiana 47907–2054

Abstract

Abstract With the exception of cellulose and callose, the cell wall polysaccharides are synthesized in Golgi membranes, packaged into vesicles, and exported to the plasma membrane where they are integrated into the microfibrillar structure. Consistent with this paradigm, several published reports have shown that the maize (Zea mays) mixed-linkage (1→3),(1→4)-β-d-glucan, a polysaccharide that among angiosperms is unique to the grasses and related Poales species, is synthesized in vitro with isolated maize coleoptile Golgi membranes and the nucleotide-sugar substrate, UDP-glucose. However, a recent study reported the inability to detect the β-glucan immunocytochemically at the Golgi, resulting in a hypothesis that the mixed-linkage β-glucan oligomers may be initiated at the Golgi but are polymerized at the plasma membrane surface. Here, we demonstrate that (1→3),(1→4)-β-d-glucans are detected immunocytochemically at the Golgi of the developing maize coleoptiles. Further, when maize seedlings at the third-leaf stage were pulse labeled with [14C]O2 and Golgi membranes were isolated from elongating cells at the base of the developing leaves, (1→3),(1→4)-β-d-glucans of an average molecular mass of 250 kD and higher were detected in isolated Golgi membranes. When the pulse was followed by a chase period, the labeled polysaccharides of the Golgi membrane diminished with subsequent transfer to the cell wall. (1→3),(1→4)-β-d-Glucans of at least 250 kD were isolated from cell walls, but much larger aggregates were also detected, indicating a potential for intermolecular interactions with glucuronoarabinoxylans or intermolecular grafting in muro.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3