The Mechanism of Synthesis of a Mixed-Linkage (1→3),(1→4)β-d-Glucan in Maize. Evidence for Multiple Sites of Glucosyl Transfer in the Synthase Complex1

Author:

Buckeridge Marcos S.1,Vergara Claudia E.2,Carpita Nicholas C.2

Affiliation:

1. Instituto de Botânica, Secão de Fisiologia e Bioquı́mica Plantas, Caixa Postal 4005, CEP–01061970, São Paulo, SP Brazil (M.S.B.)

2. Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907–1155 (C.E.V., N.C.C.)

Abstract

Abstract We examined the mechanism of synthesis in vitro of (1→3),(1→4)β-d-glucan (β-glucan), a growth-specific cell wall polysaccharide found in grasses and cereals. β-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1→3)β-linkages. The ratio of cellotriosyl and cellotetraosyl units in the native polymer is strictly controlled at between 2 and 3 in all grasses, whereas the ratios of these units in β-glucan formed in vitro vary from 1.5 with 5 μm UDP-glucose (Glc) to over 11 with 30 mmsubstrate. These results support a model in which three sites of glycosyl transfer occur within the synthase complex to produce the cellobiosyl-(1→3)-d-glucosyl units. We propose that failure to fill one of the sites results in the iterative addition of one or more cellobiosyl units to produce the longer cellodextrin units in the polymer. Variations in the UDP-Glc concentration in excised maize (Zea mays) coleoptiles did not result in wide variations in the ratios of cellotriosyl and cellotetraosyl units in β-glucan synthesized in vivo, indicating that other factors control delivery of UDP-Glc to the synthase. In maize sucrose synthase is enriched in Golgi membranes and plasma membranes and may be involved in the control of substrate delivery to β-glucan synthase and cellulose synthase.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3