Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion

Author:

Akinyemi Oladapo S.1,Jiang Lulin2,Buchireddy Prashanth R.3,Barskov Stanislav O.3,Guillory John L.2,Holmes Williams3

Affiliation:

1. Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504 e-mail:

2. Department of Mechanical Engineering, Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70504 e-mail:

3. Department of Chemical Engineering, Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70504 e-mail:

Abstract

Biomass torrefaction is a mild pyrolysis thermal treatment process carried out at temperatures between 200 and 300 °C under inert conditions to improve fuel properties of parent biomass. Torrefaction yields a higher energy per unit mass product but releases noncondensable and condensable gases, signifying energy and mass losses. The condensable gases (volatiles) can result in tar formation on condensing, hence, system blockage. Fortunately, the hydrocarbon composition of volatiles represents a possible auxiliary energy source for feedstock drying and/or torrefaction process. The present study designed a low-pressure volatile burner for torrefaction of pine wood chips and investigated energy recovery from volatiles through clean co-combustion with natural gas (NG). The research studied the effects of torrefaction pretreatment temperatures on the amount of energy recovered for various combustion air flow rates. For all test conditions, blue flames and low emissions at the combustor exit consistently signified clean and complete premixed combustion. Torrefaction temperature at 283–292 °C had relatively low volatile energy recovery, mainly attributed to higher moisture content evolution and low molecular weight of volatiles evolved. At the lowest torrefaction pretreatment temperature, small amount of volatiles was generated with more energy recovered. Energy conservation evaluation on the torrefaction reactor indicated that about 27% of total energy carried by the exiting volatiles and gases has been recovered by the co-fire of NG and volatiles at the lowest temperature, while around 19% of the total energy was recovered at the intermediate and highest torrefaction temperatures, respectively. The energy recovered represents about 23–45% of the energy associated with NG combustion in the internal burner of the torrefaction reactor, signifying that the volatiles energy can supplement significant amount of the energy required for torrefaction.

Funder

Louisiana Board of Regents

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference52 articles.

1. Assessment Report From the GCEP Workshop on Energy Supply With Negative Carbon Emissions,2012

2. Wood Would Burn;Biomass Bioenergy,2011

3. Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review;Biomass Bioenergy,2011

4. A Review of Torrefaction for Bioenergy Feedstock Production;Biofuels Bioprod. Biorefin.,2011

5. Recent Advances in Biomass Pretreatment—Torrefaction Fundamentals and Technology;Renewable Sustainable Energy Rev.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3