Introducing a Novel Air Handling Unit Based on Focusing on Turbulent Exhaust Air Energy-Exergy Recovery Potential

Author:

Zheng Yuanzhou12,Kalbasi Rasool3,Karimipour Arash3,Liu Peng12,Bach Quang-Vu4

Affiliation:

1. Hubei Key Laboratory of Inland Shipping Technology;

2. School of Navigation, Wuhan University of Technology, 588 Youyi Avenue, Wuhan, China

3. Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy

4. Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam,

Abstract

Abstract A novel air handling unit (AHU) aimed at reducing energy consumption was introduced in this study. In the proposed novel AHU, the heating coil is completely removed, and therefore, no heating coil energy demand is needed. The novel AHU used primary energy recovery as well as secondary one to utilize the return air energy and exergy. Through the first energy recovery unit, the return air exergy was recovered, while in the secondary heat exchanger, return air energy was recycled. Results showed that using the novel AHU leads to a reduction in energy consumption as well as the exergy losses. Three climate zones of A, B, and C were selected to assess the novel AHU performance. From the first law viewpoint, at zone B, using novel AHU has priority over other zones, while in the second law analysis, utilizing the novel AHU at zones B and C is more beneficial. Based on the first law analysis, owing to using novel AHU, energy consumption reduced up to 55.2% at Penang climate zone. Second law analysis revealed that utilizing the novel AHU decreased the irreversibility up to 51.4% in the Vancouver climate region.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3