Enhancing the Performance of a Safe Controller Via Supervised Learning for Truck Lateral Control

Author:

Chen Yuxiao1,Hereid Ayonga2,Peng Huei3,Grizzle Jessy4

Affiliation:

1. Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91106 e-mail:

2. Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, OH 43210 e-mail:

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

4. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 e-mail:

Abstract

Correct-by-construction techniques, such as control barrier functions (CBFs), can be used to guarantee closed-loop safety by acting as a supervisor of an existing legacy controller. However, supervisory-control intervention typically compromises the performance of the closed-loop system. On the other hand, machine learning has been used to synthesize controllers that inherit good properties from a training dataset, though safety is typically not guaranteed due to the difficulty of analyzing the associated learning structure. In this paper, supervised learning is combined with CBFs to synthesize controllers that enjoy good performance with provable safety. A training set is generated by trajectory optimization that incorporates the CBF constraint for an interesting range of initial conditions of the truck model. A control policy is obtained via supervised learning that maps a feature representing the initial conditions to a parameterized desired trajectory. The learning-based controller is used as the performance controller and a CBF-based supervisory controller guarantees safety. A case study of lane keeping (LK) for articulated trucks shows that the controller trained by supervised learning inherits the good performance of the training set and rarely requires intervention by the CBF supervisor.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3