Absolute Nodal Coordinate Formulation Coupled Deformation Modes

Author:

Hussein Bassam A.1,Sugiyama Hiroyuki2,Shabana Ahmed A.1

Affiliation:

1. University of Illinois at Chicago

2. University of Tokyo

Abstract

The finite element absolute nodal coordinate formulation (ANCF) leads to beam and plate models that relax the assumption of the classical Euler-bernoulli and Timoshenko beam and Mindlin plate theories. In these more general models, the cross section is allowed to deform and it is no longer treated as a rigid surface. The coupling between the bending and cross section deformations leads to the new ANCF-coupled deformation modes that are examined in this study. While these coupled deformation can be source of numerical and convergence problems when thin and stiff beam models are considered, the inclusion of the effect of these modes in the dynamic model is necessary in the case of very flexible structures. In order to examine the effect of these coupled deformation modes in this investigation, three different large deformation dynamic beam models are discussed. Two of these models, which differ in the way the beam elastic forces are calculated in the absolute nodal coordinate formulation, allow for systematically eliminating the coupled deformation modes, while the third allows for including these modes. The first of these models is based on a general continuum mechanics approach that leads to a model that includes the ANCF-coupled deformation modes; while the second and third methods that can be used to eliminate the coupled deformation modes are based on the elastic line approach and the Hellinger-Reissner principle. It is shown in this study that the inclusion of the ANCF-coupled deformation modes introduces geometric stiffening effects that can not be captured using other finite element models.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Dynamic Characteristics of Rotating Thick Ring on the Elastic Foundation Based on Plane Stress Theory;International Journal of Structural Stability and Dynamics;2023-07-21

2. A Continuum Based Three-Dimensional Modeling of Wind Turbine Blades;Journal of Computational and Nonlinear Dynamics;2012-10-30

3. Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams;Multibody System Dynamics;2007-07-12

4. Absolute Nodal Coordinate Formulation Coupled Deformation Modes;Design Engineering and Computers and Information in Engineering, Parts A and B;2006-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3