Affiliation:
1. Engineering Mechanics Department, SRI International, Menlo Park, Calif.
Abstract
A laboratory experiment was conducted to study hydraulic fracturing in an impermeable material (PMMA). Quantitative experimental data were obtained to compare with numerical predictions for a simple hydraulic fracture treatment that is not complicated by the effects of fluid leak-off and proppant transport. The borehole pressure, the pressure in the fracture at three locations, the fracture width at one location, and the fracture length were measured as functions of time during propagation of a vertically contained hydraulic fracture. The experimental data are compared with the predictions of simple solutions and the results indicate that when the finite width of the laboratory model is included in the analysis, the comparison between theory and experiment is quite good. The results also indicate that the assumption of a uniform pressure distribution in the fracture is adequate to accurately predict the critical parameters (fracture width and length) even when the fracturing fluid is very viscous.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献