A Framework for Inverse Prediction Using Functional Response Data

Author:

Ries Daniel1,Zhang Adah1,Derek Tucker J.1,Shuler Kurtis1,Ausdemore Madeline2

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM 87185

2. Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Abstract Inverse prediction models have commonly been developed to handle scalar data from physical experiments. However, it is not uncommon for data to be collected in functional form. When data are collected in functional form, it must be aggregated to fit the form of traditional methods, which often results in a loss of information. For expensive experiments, this loss of information can be costly. This paper introduces the functional inverse prediction (FIP) framework, a general approach which uses the full information in functional response data to provide inverse predictions with probabilistic prediction uncertainties obtained with the bootstrap. The FIP framework is a general methodology that can be modified by practitioners to accommodate many different applications and types of data. We demonstrate the framework, highlighting points of flexibility, with a simulation example and applications to weather data and to nuclear forensics. Results show how functional models can improve the accuracy and precision of predictions.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference29 articles.

1. Estimating Maggot Age From Weight Using Inverse Prediction;Wells;J. Forensic Sci.,1995

2. Comparing Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications;Lewis;Chemom. Intell. Lab. Syst.,2018

3. Utilizing Distributional Measurements of Material Characteristics From SEM Images for Inverse Prediction.;Ries;J. Nucl. Mater. Manage.,2019

4. Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information;Haaland;Anal. Chem.,1988

5. Bayesian Calibration of Computer Models;Kennedy;J. R. Stat. Soc.: Seri. B (Stat. Methodol.),2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3