A probabilistic inverse prediction method for predicting plutonium processing conditions

Author:

Ausdemore Madeline A.,McCombs Audrey,Ries Daniel,Zhang Adah,Shuler Kurtis,Tucker J. Derek,Goode Katherine,Huerta J. Gabriel

Abstract

In the past decade, nuclear chemists and physicists have been conducting studies to investigate the signatures associated with the production of special nuclear material (SNM). In particular, these studies aim to determine how various processing parameters impact the physical, chemical, and morphological properties of the resulting special nuclear material. By better understanding how these properties relate to the processing parameters, scientists can better contribute to nuclear forensics investigations by quantifying their results and ultimately shortening the forensic timeline. This paper aims to statistically analyze and quantify the relationships that exist between the processing conditions used in these experiments and the various properties of the nuclear end-product by invoking inverse methods. In particular, these methods make use of Bayesian Adaptive Spline Surface models in conjunction with Bayesian model calibration techniques to probabilistically determine processing conditions as an inverse function of morphological characteristics. Not only does the model presented in this paper allow for providing point estimates of a sample of special nuclear material, but it also incorporates uncertainty into these predictions. This model proves sufficient for predicting processing conditions within a standard deviation of the observed processing conditions, on average, provides a solid foundation for future work in predicting processing conditions of particles of special nuclear material using only their observed morphological characteristics, and is generalizable to the field of chemometrics for applicability across different materials.

Publisher

Frontiers Media SA

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3