Co-delivery of the autophagy inhibitor si-Beclin1 and the doxorubicin nano-delivery system for advanced prostate cancer treatment

Author:

Hu Chuling1ORCID,Gu Fenfen2,Gong Chunai3,Xia Qingming3,Gao Yuan4,Gao Shen3

Affiliation:

1. Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China

2. Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China

3. Changhai Hospital, Shanghai, China

4. Fudan University, Shanghai, China

Abstract

Resistance to apoptosis is a key mechanism underlying how cancer cells evade tumor therapy. Autophagy can prevent anticancer drug-induced apoptosis and promote tumor resistance. The purpose of this study was to improve the sensitivity and efficacy of chemotherapeutic drugs through the inhibition of autophagy. Hydrophobic doxorubicin–hydrazone–caproyl–maleimide (DOX-EMCH) and autophagy-inhibiting si-Beclin1 were simultaneously delivered via the amphiphilic peptide micelle system (Co-PMs) using poly(L-arginine)–poly(L-histidine)–DOX-EMCH as the copolymer building unit. The constructed micelle system promoted the escape of si-Beclin1 from endosomes and the release of DOX into the nucleus. The Co-PMs exhibited 2.7-fold higher cytotoxicity and proapoptotic ability in PC3 cells than DOX treatment alone, demonstrating that si-Beclin1 could inhibit the autophagic activity of prostate cancer (PCa) cells by targeting the type III PI3K pathway and enhance the sensitivity of the cells to the chemotherapeutic drug DOX. In addition, the peptide micelles successfully passively targeted DOX and si-Beclin1 to the tumor tissue. Compared with DOX or si-Beclin1 treatment alone, the Co-PMs showed a 3.4-fold greater tumor inhibitory potential in vivo, indicative of a significant antiproliferative effect. Our results suggested that the Co-PMs developed in this study have the potential to combine autophagy inhibition and chemotherapy in cancer treatment, especially for PCa.

Funder

The Research Fund for Academician Lin He New Medicine

The Science and Technology Project of Jiaxing, Zhejiang, China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3