Characterizing the inherent activity of urinary bladder matrix for adhesion, migration, and activation of fibroblasts as compared with collagen-based synthetic scaffold

Author:

Tang Xiaoyu1ORCID,Yang Fengbo2,Chu Guoping3,Li Xiaoxiao1,Fu Qiuyan4,Zou Mingli1,Zhao Peng3,Lu Guozhong3

Affiliation:

1. Nanjing University of Chinese Medicine, Nanjing, China

2. Nantong University, Nantong, China

3. Affiliated Hospital of Jiangnan University, Wuxi, China

4. Jiangnan University, Wuxi, China

Abstract

The mechanism of action underlying the intriguing prominent bioactivity of urinary bladder matrix (UBM) for in situ tissue regeneration of soft tissue defects remains to be elucidated. It is speculated that the activity of UBM for cell adhesion, migration, and activation is inherent. The bioactivity of UBM for in situ tissue regeneration and its relation with the structure and intact soluble components of UBM were investigated in comparison to a collagen-based scaffold, PELNAC (PEL). We isolated the soluble component of the two materials with urea buffer, and evaluated the respective effect of these soluble components on the in vitro adhesion and migration of L929 fibroblasts. The spatiotemporal pattern of endogenous-cell ingrowth into the scaffolds and cell activation were investigated using a model of murine subcutaneous implantation. UBM is more capable of promoting the adhesion, migration, and proliferation of fibroblasts than PEL in a serum-independent manner. In vivo, as compared with PEL, UBM exhibits significantly enhanced activity for fast endogenous cell ingrowth and produces a more prominent pro-regenerative and pro-remodeling microenvironment by inducing the expression of TGF-β1, VEGF, MMP-9, and murine type I collagen. Overall, our results suggest the prominent bioactivity of UBM for in situ tissue regeneration is inherent.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3