Analysis of Automotive Paint Smears Using Attenuated Total Reflection Infrared Microscopy

Author:

Affadu-Danful George P.1,Kalkan A. Kaan2ORCID,Zhang Linqi2,Lavine Barry K.1ORCID

Affiliation:

1. Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA

2. Department of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, USA

Abstract

Paint smears represent a type of automotive paint sample found at a crime scene that is problematic for forensic automotive paint examiners to analyze as there are no reference materials present in automotive paint databases to generate hit-lists of potential suspect vehicles. Realistic paint smears are difficult to create in a laboratory and have also proven challenging to analyze because of the mixing of the various automotive paint layers. A procedure based on an impact tester has been developed to create smears to simulate paint transfer between vehicles during a collision. Data collected from 24 original equipment manufacturer (OEM) paints in simulated collisions using an impact tester with a steel (inert) substrate to simulate vehicle to vehicle collisions shows that attenuated total reflection infrared microscopy can isolate individual paint layers. For each OEM paint sample, the corresponding smear obtained was dependent upon the conditions used. By varying these conditions, the number of distinct layers obtained could be tuned for each of the OEM paints investigated. Furthermore, the IR spectrum of each layer extracted from the paint smear using alternating least squares was found to compare favorably to an in-house OEM paint infrared spectral library for each layer as the correct match (make and model of the vehicle from which the smear originated) was always found as a top five hit in the hit-list. The results of this study indicate that paint smears developed using an impactor can serve as the basis of realistic proficiency tests for forensic laboratories.

Funder

National Institute of Justice

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3