Melatonin Attenuates Aortic Endothelial Permeability and Arteriosclerosis in Streptozotocin-Induced Diabetic Rats

Author:

Tang Song-tao123,Su Huan2,Zhang Qiu3,Tang Hai-qin4,Wang Chang-jiang3,Zhou Qing2,Wei Wei1,Zhu Hua-qing2,Wang Yuan12

Affiliation:

1. Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China

2. Department of Biochemistry, Laboratory of Molecular Biology, Anhui Medical University, Hefei, China

3. Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China

4. Department of Geriatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China

Abstract

The development of diabetic macrovascular complications is a multifactorial process, and melatonin may possess cardiovascular protective properties. This study was designed to evaluate whether melatonin attenuates arteriosclerosis and endothelial permeability by suppressing the myosin light-chain kinase (MLCK)/myosin light-chain phosphorylation (p-MLC) system via the mitogen-activated protein kinase (MAPK) signaling pathway or by suppressing the myosin phosphatase-targeting subunit phosphorylation (p-MYPT)/p-MLC system in diabetes mellitus (DM). Rats were randomly divided into 4 groups, including control, high-fat diet, DM, and DM + melatonin groups. Melatonin was administered (10 mg/kg/d) by gavage for 12 weeks. The DM significantly increased the serum fasting blood glucose and lipid levels, as well as insulin resistance and endothelial dysfunction, which were attenuated by melatonin therapy to various extents. Importantly, the aortic endothelial permeability was significantly increased in DM rats but was dramatically reversed following treatment with melatonin. Our findings further indicated that hyperglycemia and hyperlipidemia enhanced the expressions of MLCK, p-MYPT, and p-MLC, which were partly associated with decreased membrane type 1 expression, increased extracellular signal-regulated kinase (ERK) phosphorylation, and increased p38 expression. However, these changes in protein expression were also significantly reversed by melatonin. Thus, our results are the first to demonstrate that the endothelial hyperpermeability induced by DM is associated with increased expressions of MLCK, p-MYPT, and p-MLC, which can be attenuated by melatonin at least partly through the ERK/p38 signaling pathway.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3