Melatonin Alleviates Hyperglycemia-Induced Cardiomyocyte Apoptosis via Regulation of Long Non-Coding RNA H19/miR-29c/MAPK Axis in Diabetic Cardiomyopathy

Author:

Tang Haitao,Zhong Hongli,Liu Wanqing,Wang Yi,Wang Yuan,Wang Liuqing,Tang Songtao,Zhu HuaqingORCID

Abstract

Recent studies revealed that non-coding RNAs (ncRNAs) play a crucial role in pathophysiological processes involved in diabetic cardiomyopathy (DCM) that contribute to heart failure. The present study was designed to further investigate the anti-apoptotic effect of melatonin on cardiomyocytes in diabetic conditions, and to elucidate the potential mechanisms associated with ncRNAs. In animal models, we induced diabetes in SD rats by single intraperitoneal injection of streptozotocin (STZ) solution (55 mg/kg) at 18:00 in the evening, after a week of adaptive feeding. Our results indicate that melatonin notably alleviated cardiac dysfunction and cardiomyocyte apoptosis. In the pathological situation, lncRNA H19 level increased, along with a concomitant decrease in miR-29c level. Meanwhile, melatonin significantly downregulated lncRNA H19 and upregulated miR-29c levels. In our in vitro experiments, we treated H9c2 cells with high-concentration glucose medium (33 mM) to simulate the state of diabetes. It was verified that positive modulation of miR-29c and inhibition of lncRNA H19, as well as mitogen-activated protein kinase (MAPK) pathways, distinctly attenuated apoptosis in high-glucose-treated H9c2 cells. A luciferase activity assay was conducted to evaluate the potential target sites of miR-29c on lncRNA H19 and MAPK13. LncRNA H19 silencing significantly downregulated the expression of miR-29c target gene MAPK13 by inducing miR-29c expression. Most importantly, our results show that melatonin alleviated apoptosis by inhibiting lncRNA H19/MAPK and increasing miR-29c level. Our results elucidate a novel protective mechanism of melatonin on diabetic cardiomyocyte apoptosis, which involved the regulation of lncRNA H19/miR-29c and MAPK pathways, providing a promising strategy for preventing DCM in diabetic patients.

Funder

National Natural Science Foundation of China

Key Research and Development Project in Anhui Province

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3