The Effect of Fluoride On Apatite Structure and Growth

Author:

Aoba T.1

Affiliation:

1. The Nippon Dental University, Department of Pathology, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102, Japan

Abstract

Fluoride participates in many aspects of calcium phosphate formation in vivo and has enormous effects on the process and on the nature and properties of formed mineral. The most well-documented effect of fluoride is that this ion substitutes for a column hydroxyl in the apatite structure, giving rise to a reduction of crystal volume and a concomitant increase in structural stability. In the process of enamel mineralization during amelogenesis (a unique model for the cell-mediated formation of well-crystallized carbonatoapatite), free fluoride ions in the fluid phase are supposed to accelerate the hydrolysis of acidic precursor(s) and increase the driving force for the growth of apatitic mineral. Once fluoride is incorporated into the enamel mineral, the ion likely affects the subsequent mineralization process by reducing the solubility of the mineral and thereby modulating the ionic composition in the fluid surrounding the mineral, and enhancing the matrix protein-mineral interaction. But excess fluoride leads to anomalous enamel formation by retarding tissue maturation. It is worth noting that enameloid/enamel minerals found in vertebrate teeth have a wide range of CO3 and fluoride substitutions. In the evolutionary process from elasmobranch through teleost enameloid to mammalian enamel, the biosystems appear to develop regulatory functions for limiting the fluoridation of the formed mineral, but this development is accompanied by an increase of carbonate substitution or defects in the mineral. In research on the cariostatic effect of fluoride, considerable emphasis is placed on the roles of free fluoride ions (i.e., preventing the dissolution and accelerating the kinetics of remineralization) in the oral fluid bathing tooth mineral. Fluoride also has been used for the treatment of osteoporosis, but much still remains to be learned about maximizing the benefit and minimizing the risk of fluoride when used as a public health measure.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3