Seriation of Enzyme‐Functionalized Multilayers for the Design of Scalable Biomimetic Mineralized Structures

Author:

Foley Brittany12ORCID,Nadaud Frédéric3,Selmane Mohamed4,Valentin Laetitia1,Mezzetti Alberto1,Egles Christophe5,Jolivalt Claude1,El Kirat Karim2,Guibert Clément1,Landoulsi Jessem12ORCID

Affiliation:

1. Sorbonne Université CNRS Laboratoire de Réactivité de Surface (LRS) Paris F‐75005 France

2. Laboratoire de Biomécanique & Bioingénierie CNRS Université de Technologie de Compiègne BP 20529 Compiègne Cedex F‐60205 France

3. Service Analyses Physico‐Chimiques SAPC Université de Technologie de Compiègne BP 20529 Compiègne Cedex F‐60205 France

4. Fédération de Chimie et Matériaux de Paris‐Centre (FCMat) FR2482 Paris F‐75005 France

5. Univ Rouen Normandie, INSA Rouen Normandie CNRS Normandie Univ Polymères Biopolymères et Surfaces (PBS, UMR 6270) 55 Rue Saint‐Germain Évreux 27 000 France

Abstract

AbstractBiomimetic hydroxyapatites are widely explored for their potential applications in the repair of mineralized tissues, particularly dental enamel, which is acellular and, thus, not naturally reformed after damage. Enamel is formed with a highly‐controlled hierarchical structure, which is difficult to replicate up to the macroscale. A biomimetic approach is thus warranted, based on the same principles that drive biomineralization in vivo. Herein, a strategy for the design of enamel‐like architectures is described, utilizing enzymes embedded in polyelectrolyte multilayers to generate inorganic phosphate locally, and provide a favorable chemical environment for the nucleation and growth of minerals. Moreover, a method is proposed to build up seriated mineral layers with scalable thicknesses, continuous mineral growth, and tunable morphology. Results show the outstanding growth of cohesive mineral layers, yielding macroscopic standalone fluoride and/or carbonate‐substituted hydroxyapatite materials with comparable crystal structure and composition to native human mineralized tissues. This strategy presents a promising path forward for the biomimetic design of biomineral materials, particularly relevant for restorative applications, with an exquisite level of synthetic control over multiple orders of magnitude.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3