Influence of post-processing treatment on the surface roughness of polyamide PA12 samples manufactured using additive methods in the context of the production of orthoses

Author:

Turek Paweł1ORCID,Bazan Anna1,Zakrecki Andrzej23

Affiliation:

1. Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Poland

2. MEDIPRINTIC Sp. Z.O.O., Poland

3. Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Krakow, Poland

Abstract

Additive techniques are gaining popularity, primarily due to the emergence of new 3D printing methods, advancements in 3D printers, and the availability of innovative materials. Models produced using additive processes can undergo additional post-processing and dyeing to modify their functional and visual properties. This article presents the results of surface roughness tests conducted on samples made of polyamide PA12, using the Selective Laser Sintering (SLS) and HP MultiJet Fusion (MJF) methods. Regarding the processing methods, chemical surface treatment contributed to reducing Ra and Rz parameters by about 80% for both analyzed printing methods, while mechanical surface treatment resulted in a reduction of approximately 40% for SLS samples and 30% for MJF samples. On the other hand, dyeing and applying an antibacterial coating did not significantly affect the Ra and Rz parameter values. Considering the obtained results, the recommended manufacturing method for orthosis is the MJF method, and the finishing process should include mechanical treatment followed by dyeing.

Funder

European Regional Development Fund

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3