Affiliation:
1. Department of Civil Engineering, Lakehead University, Thunder Bay, ON, Canada
2. Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
3. Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
Abstract
Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms. CNN-classifier models are used to identify different types of defects and semantic segmentation for labeling the defect patterns within an image. Three CNN-based models—Visual Geometry Group (VGG)19, ResNet50, and InceptionV3 are incorporated as CNN-classifiers. For semantic segmentation, two encoder-decoder models, U-Net and pyramid scene parsing network architecture are developed based on four backbone models, including VGG19, ResNet50, InceptionV3, and EfficientNetB3. The CNN-classifier models are analyzed on two optimizers—stochastic gradient descent (SGD), root mean square propagation (RMSprop), and learning rates—0.1, 0.001, and 0.0001. However, the CNN-segmentation models are analyzed for SGD and adaptive moment estimation, trained with three different learning rates—0.1, 0.01, and 0.0001, and evaluated based on accuracy, intersection over union, precision, recall, and F1-score. InceptionV3 achieves the best performance for defects classification with an accuracy of 91.98% using the RMSprop optimizer. For crack segmentation, EfficientNetB3-based U-Net, and for spalling segmentation, IncenptionV3-based U-Net model outperformed all other algorithms, with an F1-score of 95.66 and 89.43%, respectively.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Mechanical Engineering,Biophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献