Dynamic analysis of finger seal using equivalent model based on distributed mass method

Author:

Chen Guo-Ding1,Lu Fei1,Yu Qiang-Peng2,Su Hua1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China

2. AVIC Commercial Aircraft Engine Co. Ltd., Shanghai, China

Abstract

Dynamic analysis of finger seal can be performed by finite element method or equivalent model based on lumped mass method now available, which is difficult in meeting both the acceptable calculation time and accuracy simultaneously. For this reason, interactions between finger elements are considered and the equivalent dynamic model based on distributed mass method is proposed in this article. Seal dynamic performances are obtained by using this model to calculate the equivalent parameters, air leakage flow, and the contact behavior between finger seal and the rotor. The work to be presented here concerns the mapping of dynamic behavior of the finger seal with a stack of three finger elements, including the dynamic displacement responses of finger elements, the leakage clearances, and the contact pressures between the finger elements and the rotor, as well as the leakage flow rate and the wear rate. The results calculated by the equivalent model presented in this study are evaluated by comparison with the published experimental data and results from the model based on lumped mass method, which shows that the equivalent model based on distributed mass method is far superior to that based on lumped mass method because the calculations are in good agreement with the experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wear modelling and sealing performance prediction of C/C composite finger seal;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2022-12-21

2. Static Characteristics of Finger Seal considering Contact between Fingers and Rotor;Shock and Vibration;2022-03-14

3. Theoretical and Experimental Investigation of Variable Stiffness Finger Seal;Tribology Transactions;2020-03-30

4. Theoretical and experimental studies on the optimization of finger seal;Journal of Advanced Mechanical Design, Systems, and Manufacturing;2020

5. An anisotropic porous media model for leakage analysis of finger seal;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2019-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3