Spironolactone ameliorates podocytic adhesive capacity via restoring integrin α3 expression in streptozotocin-induced diabetic rats

Author:

Shan Lin 1,Dong Li 2,Junya Jia 2,Zhenfeng Zheng 2,Zhonghui Jia 2,Wenya Shang 2

Affiliation:

1. Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin, China,

2. Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin, China

Abstract

Podocyte responses to various injuries include detachment from the glomerular basement membrane (GBM) with impaired adhesion ability. Growing evidence suggests inappropriately enhanced aldosterone levels in glomeruli may contribute to podocytic injury and subsequently glomerulosclerosis in diabetic nephropathy (DN). In the present study, we aimed to investigate podocytic integrin α3 expression and urinary podocyte excretion in streptozotocin (STZ)-induced diabetic rats, and to evaluate their responses to spironolactone (SPL). STZ-induced male diabetic Wistar rats were treated with vehicle (the STZ group, n=7), or spironolactone (the STZ+SPL group, n=6) for 12 weeks, six additional rats of similar body weight serving as control. Urine specimens were obtained for measurement of urine albumin concentration and urinary podocyte quantitation upon completion of the 12 weeks. Urinary podocyte excretion was quantified by immunofluorescence and expression of integrin α3 was detected by immunohistochemistry and Western blotting. At 12 weeks, rats given STZ alone revealed an increase in blood glucose and were unaffected by spironolactone, whereas the STZ+SPL group showed considerable improvement in urine albumin and podocyte excretion, as well as up-regulation of integrin α3. Our results suggest that spironolactone ameliorates impaired podocytic adhesion capacity and prevents STZ-induced DN progression.

Publisher

Hindawi Limited

Subject

Endocrinology,Internal Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3