Glucose-Induced Reactive Oxygen Species Cause Apoptosis of Podocytes and Podocyte Depletion at the Onset of Diabetic Nephropathy

Author:

Susztak Katalin1,Raff Amanda C.1,Schiffer Mario1,Böttinger Erwin P.2

Affiliation:

1. Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York

2. Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York

Abstract

Diabetic nephropathy is the most common cause of end-stage renal disease in the U.S. Recent studies demonstrate that loss of podocytes is an early feature of diabetic nephropathy that predicts its progressive course. Cause and consequences of podocyte loss during early diabetic nephropathy remain poorly understood. Here, we demonstrate that podocyte apoptosis increased sharply with onset of hyperglycemia in Ins2Akita (Akita) mice with type 1 diabetes and Leprdb/db (db/db) mice with obesity and type 2 diabetes. Podocyte apoptosis coincided with the onset of urinary albumin excretion (UAE) and preceded significant losses of podocytes in Akita (37% reduction) and db/db (27% reduction) mice. Increased extracellular glucose (30 mmol/l) rapidly stimulated generation of intracellular reactive oxygen species (ROS) through NADPH oxidase and mitochondrial pathways and led to activation of proapoptotic p38 mitogen-activated protein kinase and caspase 3 and to apoptosis of conditionally immortalized podocytes in vitro. Chronic inhibition of NADPH oxidase prevented podocyte apoptosis and ameliorated podocyte depletion, UAE, and mesangial matrix expansion in db/db mice. In conclusion, our results demonstrate for the first time that glucose-induced ROS production initiates podocyte apoptosis and podocyte depletion in vitro and in vivo and suggest that podocyte apoptosis/depletion represents a novel early pathomechanism(s) leading to diabetic nephropathy in murine type 1 and type 2 diabetic models.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3