Stability Analysis of a Clock-Driven Rigid-Body SLIP Model for RHex

Author:

Altendorfer Richard1,Koditschek Daniel E.1,Holmes Philip2

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

2. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

Abstract

We apply the stability analysis for hybrid legged locomotion systems, introduced in our companion paper in this issue, to a new simple clock-driven SLIP model inspired by the robot RHex. We adopt in stance phase the three-degrees-of-freedom (3DoF) spring loaded inverted pendulum (SLIP) model introduced in our companion paper to capture RHex’s pitching dynamics in the sagittal plane. The coordinating influence of RHex’s open-loop clock controller is subsumed into a leg placement strategy derived from a bipedal abstraction of RHex. The “symmetric” factorization analysis introduced in our companion paper yields a necessary condition for gait stability expressed in closed form, which can be imposed directly on the clock parameter space. This represents the first reported analytical insight into how a dynamical runner might be stabilized by a completely feed forward rhythmic limb coordination pattern. Correspondence in steady-state gait location and stability characteristics with an appropriately tuned 24DoF model of RHex provides numerical evidence that the 3DoF SLIP model offers a descriptive explanation for the robot’s empirical running behavior.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3