High-speed bounding with the MIT Cheetah 2: Control design and experiments

Author:

Park Hae-Won1,Wensing Patrick M2,Kim Sangbae2

Affiliation:

1. Department of Mechanical Engineering and Science, University of Illinois at Urbana Champaign, USA

2. Department of Mechanical Engineering, Massachusetts Institute of Technology, USA

Abstract

This paper presents the design and implementation of a bounding controller for the MIT Cheetah 2 and its experimental results. The paper introduces the architecture of the controller along with the functional roles of its subcomponents. The application of impulse scaling provides feedforward force profiles that automatically adapt across a wide range of speeds. A discrete gait pattern stabilizer maintains the footfall sequence and timing. Continuous feedback is layered to manage balance during the stance phase. Stable hybrid limit cycles are exhibited in simulation using simplified models, and are further validated in untethered three-dimensional bounding experiments. Experiments are conducted both indoors and outdoors on various man-made and natural terrains. The control framework is shown to provide stable bounding in the hardware, at speeds of up to 6.4 m/s and with a minimum total cost of transport of 0.47. These results are unprecedented accomplishments in terms of efficiency and speed in untethered experimental quadruped machines.

Funder

Agency for Defense Development

Defense Advanced Research Projects Agency

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3