Mathematical Analysis of Light-sensitivity Related Challenges in Assessment of the Intrinsic Period of the Human Circadian Pacemaker

Author:

Usmani Imran M.1,Dijk Derk-Jan23ORCID,Skeldon Anne C.13ORCID

Affiliation:

1. Department of Mathematics, University of Surrey, Guildford, UK

2. Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK

3. UK Dementia Research Institute Care Research & Technology Centre, Imperial College London and the University of Surrey, Guildford, UK

Abstract

Accurate assessment of the intrinsic period of the human circadian pacemaker is essential for a quantitative understanding of how our circadian rhythms are synchronized to exposure to natural and man-made light-dark (LD) cycles. The gold standard method for assessing intrinsic period in humans is forced desynchrony (FD) which assumes that the confounding effect of lights-on assessment of intrinsic period is removed by scheduling sleep-wake and associated dim LD cycles to periods outside the range of entrainment of the circadian pacemaker. However, the observation that the mean period of free-running blind people is longer than the mean period of sighted people assessed by FD (24.50 [Formula: see text] 0.17 h vs 24.15 [Formula: see text] 0.20 h, p [Formula: see text]0.001) appears inconsistent with this assertion. Here, we present a mathematical analysis using a simple parametric model of the circadian pacemaker with a sinusoidal velocity response curve (VRC) describing the effect of light on the speed of the oscillator. The analysis shows that the shorter period in FD may be explained by exquisite sensitivity of the human circadian pacemaker to low light intensities and a VRC with a larger advance region than delay region. The main implication of this analysis, which generates new and testable predictions, is that current quantitative models for predicting how light exposure affects entrainment of the human circadian system may not accurately capture the effect of dim light. The mathematical analysis generates new predictions which can be tested in laboratory experiments. These findings have implications for managing healthy entrainment of human circadian clocks in societies with abundant access to light sources with powerful biological effects.

Funder

EPSRC

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3