Role of the matrixin MMP-2 in multicellular organization of adipocytes cultured in basement membrane components

Author:

Brown L. M.1,Fox H. L.1,Hazen S. A.1,LaNoue K. F.1,Rannels S. R.1,Lynch C. J.1

Affiliation:

1. Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey 17033, USA.

Abstract

Primary rat adipocytes cultured in basement membrane component gels migrated and organized into large, three-dimensional, multicellular clusters. Gross morphological changes seen during this reorganization are described. The rate of cluster formation decreased with age of the rats and was stimulated by insulin in older, but not in younger rats. Echistatin, a disintegrin, partially inhibited the formation of multicellular clusters in a concentration-dependent fashion (50% inhibitory concentration approximately 10 nM). The original extracellular matrix was initially remodeled and eventually destroyed by the time large multicellular clusters were observed. This implied that one or more matrix-degrading protease(s) were being secreted. Adipocyte-conditioned medium was found to contain a divalent cation-sensitive gelatinase activity at approximately 72 and/or approximately 62 kDa. The elution profile of this activity from gelatin-Sepharose 4B was similar to matrix metalloproteinase 2 (MMP-2, a 72-kDa matrixin with a 62-kDa mature form), and the dimethyl sulfoxide eluant from these columns contained MMP-2 immunoreactivity. MMP-2 concentration and activity were greater in conditioned medium from young than from older animals; however, insulin did not affect the amount of MMP-2 in adipocyte-conditioned media. The matrixin inhibitor 1,10-phenanthroline not only blocked gelatinase activity in zymograms but also prevented extracellular matrix remodeling and destruction, as well as adipocyte migration and the formation of cell-cell contacts in adipocyte cultures. These observations are consistent with the hypothesis that the matrixin MMP-2 is secreted by adipocytes. Whereas matrixin activity alone may not be sufficient for the formation of multicellular clusters, the data indicate that it may have a requisite role in this process.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3