Efficient removal of aqueous Pb(II) using partially reduced graphene oxide-Fe3O4

Author:

Guo Ting1,Bulin Chaoke2,Li Bo3,Zhao Zhiwei2,Yu Huitao2,Sun He2,Ge Xin2,Xing Ruiguang2,Zhang Bangwen4

Affiliation:

1. College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, People's Republic of China

2. College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, People's Republic of China

3. Institute of Functional materials, Central Iron and Steel Research Institute, Beijing, People's Republic of China

4. Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, People's Republic of China

Abstract

Partially reduced graphene oxide-Fe3O4 composite was prepared through in situ co-precipitation and used as an efficient adsorbent for removing Pb(II) from water. The composites were characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectra, Fourier transformation infrared, Raman spectrometer, N2 adsorption–desorption, vibrating sample magnetometer, and zeta potential analyses. The impacts of pH, contact time, adsorbent dosage, temperature, and foreign substances on Pb(II) adsorption performance were investigated. The adsorption mechanism, kinetics, and thermodynamics were analyzed. The results indicate that Fe3O4 is homogeneously anchored inside the thin graphene sheets, with a particle size of 15–20 nm, resulting in a very low remanence and coercivity. The composite shows excellent and efficient adsorption performance toward aqueous Pb(II): adsorption equilibrium was reached in 10 min with the adsorption percent and quantity of 95.77% and 373.14 mgċg−1, respectively, under a condition of pH = 6, adsorbent dosage 250 mgċL−1, and Pb(II) initial concentration 97.68 mgċL−1, with the subsequent magnetic separation taking only 10 s. The adsorption performance is dependent on adsorbent dosage. A lower dosage favors a higher adsorption quantity, implying a strong adsorptive potential for partially reduced graphene oxide-Fe3O4. The adsorption quantity reached 777.28 mgċg−1, given the dosage 100 mgċL−1. The adsorption is monolayer chemisorption, the whole process of which is controlled by chemisorption and liquid film diffusion. In terms of thermodynamics, the adsorption is an exothermic and spontaneous process.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3