Application of Reduced Graphene Oxide-Zinc Oxide Nanocomposite in the Removal of Pb(II) and Cd(II) Contaminated Wastewater

Author:

Motitswe Moeng Geluk1ORCID,Badmus Kassim Olasunkanmi2ORCID,Khotseng Lindiwe1ORCID

Affiliation:

1. Chemistry Department, University of the Western Cape, Cape Town 7535, South Africa

2. Industrial Chemistry Department, First Technical University, Ibadan 23401, Nigeria

Abstract

Toxic metal wastewater is a challenge for exposed terrestrial and aquatic environments, as well as the recyclability of the water, prompting inputs for the development of promising treatment methods. Consequently, the rGO/ZnONP nanocomposite was synthesized at room temperature for four hours and was tested for the adsorption of cadmium and lead in wastewater. The optimized nanocomposite had the lowest band gap energy (2.69 eV), and functional group interactions were at 516, 1220, 1732, 3009, and 3460 cm−1. The nanocomposite showed good ZnO nanoparticle size distribution and separation on rGO surfaces. The nanocomposite’s D and G band intensities were almost the same, constituting the ZnO presence on rGO from the Raman spectrum. The adsorption equilibrium time for cadmium and lead was reached within 10 and 90 min with efficiencies of ~100%. Sips and Freundlich best fitted the cadmium and lead adsorption data (R2 ~ 1); therefore, the adsorption was a multilayer coverage for lead and a mixture of heterogenous and homogenous coverage for cadmium adsorption. Both adsorptions were best fitted by the pseudo-first-order model, suggesting the multilayer coverage dominance. The adsorbent was reused for three and seven times for cadmium and lead. The nanocomposite showed selectivity towards lead (95%) and cadmium (100%) in the interfering wastewater matrix. Conclusively, the nanocomposite may be embedded within upcoming lab-scale treatment plants, which could lead to further upscaling and it serving as an industrial wastewater treatment material.

Funder

National Research Foundation

Eskom

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3