A Study on Non-Stick Aluminium Bondpads Due to Fluorine Contamination Using SEM, EDX, TEM, IC, AUGER, XPS and TOF-SIMS Techniques

Author:

Hua Y. N.1,Redkar S.1,Lau C. K.1,Mo Z. Q.2

Affiliation:

1. Chartered Semiconductor Mfg Ltd, Singapore

2. PSB Corporation, Singapore

Abstract

Abstract Fluorine contamination on Al bondpads will result in corrosion, affect quality of bondpads and pose problem such as non-stick on pad (NSOP) during wire bonding at assembly process. In this paper, a fluorine contamination case in wafer fabrication will be studied. Some wafers were reported to have bondpad discoloration and bonding problem at the assembly house. SEM, EDX, TEM, AES and IC techniques were employed to identify the root cause of the failure. Failure analysis results showed that fluorine contamination had caused bondpad corrosion and thicker native aluminium oxide, which had resulted in discolored bondpads and NSOP. It was concluded that fluorine contamination was not due to wafer fab process, but was due to the wafer packaging foam material. XPS/ESCA and TOF-SIMS advanced tools were used to study the chemical and physical failure mechanism of fluorine-induced defects. An unknown Al compound was found using XPS technique and identified it as [AlF6]3- using electrochemical theories and TOF-SIMS technique. This finding was very significance, as it helped developing a theoretical electrochemical model for fluorine-induced corrosion and helped understanding of the mechanism of fluorine-induced corrosion on aluminium bondpads. It was found that fluorine contamination had formed [AlF6]3-on the affected bondpads and it had caused further electrochemical reactions and formed some new products of (NH4)+ and OH-. Then [AlF6]3- and (NH4)+ ions combined and formed a corrosive complex compound, (NH4)3(AlF6), while the OH- reacted with Al and caused further corrosion.

Publisher

ASM International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on the Bromine-induced Corrosion/Defects in Wafer Fabrication;Journal of Engineering Research and Sciences;2024-02

2. The Probe Mark Discoloration on Bond Pad and Wafer Storage;Advances in Science, Technology and Engineering Systems Journal;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3