RECESSED-GATE NORMALLY-OFF GaN MOSFET TECHNOLOGIES

Author:

IM KI-SIK1,KIM KI-WON1,KIM DONG-SEOK1,KANG HEE-SUNG1,KIM DO-KYWN12,CHANG SUNG-JAE2,BAE YOUNG-HO3,HAHM SUNG-HO1,CRISTOLOVEANU SORIN2,LEE JUNG-HEE1

Affiliation:

1. School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, Korea

2. IMEP-LAHC, Grenoble Institute of Technology, Minatec, BP 257, 38016 Grenoble Cedex 1, France

3. Department of Electronic Engineering, Uiduk University, Gyeongju, Korea

Abstract

We have fabricated and investigated several types of GaN MOSFETs with normally-off operation. The recessed-gate GaN MOSFET is preferred for normally-off operation, because the threshold voltage (Vth) of the device can be easily controlled, but it suffers from relatively modest current drivability which must be improved by adopting appropriate device structure and/or process. Enhanced performances have been achieved in this work by combining the recessed-gate technology with additional processes, such as: the post-recess tetramethylammonium hydroxide (TMAH) treatment to remove the plasma damage, the post-deposition annealing of gate oxide to decrease the gate leakage current, the re-growth of n+ GaN layer for source/drain to improve the access resistance and Vth uniformity, the stress control technology to achieve extremely high 2-D electron-gas density (2DEG) on source/drain and decrease the series resistance, and the use of the p- GaN back-barrier to decrease the buffer leakage current. The GaN -based FinFET with very narrow fin was also investigated as a possible candidate for high performance normally-off GaN MOSFETs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3