The modified KdV equation for a nonlinear evolution problem with perturbation technique

Author:

Asghar Saleem1,Haider Jamil Abbas2ORCID,Muhammad Noor2

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, (CUI), Pakistan

2. Abdus Salam School of Mathematical Sciences, Government College University Lahore 54600, Pakistan

Abstract

This paper examines nonlinear partial differential equation (PDE) solutions. Scientists and engineers have struggled to solve nonlinear differential equations. Nonlinear equations arrive in nearly all problems in nature. There are no well-established techniques for solving all nonlinear equations, and efforts have been made to enhance approaches for a specific class of problems. Keeping this in mind, we shall investigate the perturbation method’s efficiency in solving nonlinear PDEs. Several techniques work well for diverse issues. We recognize that there may be several solutions to a given nonlinear issue. Methods include homotropy analysis, tangent hyperbolic function, factorization and trial function. However, some of these strategies do not cover all nonlinear issue solutions. In this paper, we use the perturbation technique to solve the zeroth-order Airy equation and also find the Bessel function in the first-order nonhomogeneous differential equation by using self-similar solutions that appears in modified Korteweg–de Vries (KdV) equation. This approach will be used for nonlinear equations in physics and applied mathematics.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3