Mathematical modelling of the partial differential equations in microelectromechanical systems (MEMS) and its applications

Author:

Khan Muhammad Naveed1,Haider Jamil Abbas2,Wang Zhentao1,Gul Sana2,Lone Showkat Ahmad3,Elkotb Mohamed Abdelghany4

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan

3. Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

4. Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

Abstract

This paper presents a model of a doubly clamped electrically actuated microbeam, which is a commonly used structure in microelectromechanical systems (MEMS). The model is based on Euler–Bernoulli beam theory and includes the effect of electrostatic forces on the beam’s deflection. The electric field is modeled using the parallel plate capacitor model, and the deflection of the beam is calculated using the Galerkin method. The behavior of a microbeam subjected to the van der Waals force, which is a weak intermolecular force that arises from the interaction between the beam and a nearby surface. The microbeam is modeled using the Euler–Bernoulli beam theory, and the van der Waals force is modeled using the Lennard–Jones potential. At the last we study the model of MEMS based on multi-walled carbon nanotubes (MWCNTs). MWCNTs have unique mechanical, thermal, and electrical properties, which make them ideal for use in MEMS applications. The approximate solution of the developed models is found by using homotopy perturbation based Aboodh transformation (HPATM). HPATM is a mathematical method used to solve nonlinear equations by converting them into linear forms. This approach involves introducing a small parameter and applying perturbation theory to obtain a solution in a series form. The method’s accuracy is defined based on the existing literature because its solution matched the variation iteration-based Laplace method. Also, we compared its results with the finite difference method. The validity of the stability analysis is further established by examining the stability in the vicinity of the fixed points. Sketches are made of the phase portraits close to the equilibrium points.

Funder

the Deanship of Scientific Research at King Khalid University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3