Microbubble dynamics in brain microvessels

Author:

Bezer James H.,Prentice Paul,Kee Chang William Lim,Morse Sophie V.,Christensen-Jeffries Kirsten,Rowlands Christopher J.,Kozlov Andriy S.,Choi James J.ORCID

Abstract

ABSTRACTBackgroundFocused ultrasound stimulation of microbubbles is being tested in clinical trials for its ability to deliver drugs across the blood-brain barrier (BBB). This technique has the potential to treat neurological diseases by preferentially delivering drugs to targeted regions. Yet despite its potential, the physical mechanisms by which microbubbles alter the BBB permeability remain unclear, as direct observations of microbubbles oscillating in cerebral capillaries have never been previously recorded.The purpose of this study was to reveal how microbubbles respond to ultrasound when within the microvessels of living brain tissue.MethodsMicrobubbles in acute brain slices acquired from juvenile rats perfused with a concentrated solution of SonoVue® and dye were exposed to ultrasound pulses typically used in BBB disruption (center frequency: 1 MHz, peak-negative pressure: 0.2–1 MPa, pulse length: up to 10 ms) and observed using high-speed microscopy at up to 10 million frames per second.ResultsWe observed that microbubbles can exert mechanical stresses on a wide region of tissue beyond their initial location and immediate surroundings. A single microbubble can apply mechanical stress to parenchymal tissues several micrometers away from the vessel. Microbubbles can travel at high velocities within the microvessels, extending their influence across tens of micrometers during a single pulse. With longer pulses and higher pressures, microbubbles could penetrate the vessel wall and move through the parenchyma, refuting a previous assumption that microbubbles are confined to vessels. The probability of extravasation scales approximately with mechanical index, being rare at low pressures, but much more common at a mechanical index ≥ 0.6.ConclusionsThese observations provide important insight into microbubble dynamics in microvessels, and are critical leads into ultimately identifying the microbubble activities that lead to both safe drug delivery and into activities we seek to avoid, such as petechiae and other bioeffects.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3