Routes of importation and spatial dynamics of SARS-CoV-2 variants during localised interventions in Chile

Author:

Gutierrez BernardoORCID,Tsui Joseph L.-H.ORCID,Pullano GiuliaORCID,Mazzoli MattiaORCID,Gangavarapu KarthikORCID,Inward Rhys P.D.ORCID,Bajaj SumaliORCID,Evans Pena RosarioORCID,Busch-Moreno SimonORCID,Suchard Marc A.ORCID,Pybus Oliver G.ORCID,Dunner Alejandra,Puentes RodrigoORCID,Ayala Salvador,Fernandez Jorge,Araos RafaelORCID,Ferres LeoORCID,Colizza VittoriaORCID,Kraemer Moritz U.G.ORCID

Abstract

AbstractSouth America suffered large SARS-CoV-2 epidemics between 2020 and 2022 caused by multiple variants of interest and concern, some causing substantial morbidity and mortality. However, their transmission dynamics are poorly characterised. The epidemic situation in Chile enables us to investigate differences in the distribution and spread of variants Alpha, Gamma, Lambda, Mu and Delta. Chile implemented non-pharmaceutical interventions and an integrated genomic and epidemiological surveillance system that included airport and community surveillance to track SARS-CoV-2 variants. Here we combine viral genomic data and anonymised human mobility data from mobile phones to characterise the routes of importation of different variants into Chile, the relative contributions of airport-based importations to viral diversity versus land border crossings and test the impact of the mobility network on the diffusion of viral lineages within the country. We find that Alpha, Lambda and Mu were identified in Chile via airport surveillance six, four and five weeks ahead of their detection via community surveillance, respectively. Further, some variants that originated in South America were imported into Chile via land rather than international air travel, most notably Gamma. Different variants exhibited similar trends of viral dissemination throughout the country following their importation, and we show that the mobility network predicts the time of arrival of imported lineages to different Chilean comunas. Higher stringency of local NPIs was also associated with fewer domestic viral importations. Our results show how genomic surveillance combined with high resolution mobility data can help predict the multi-scale geographic expansion of emerging infectious diseases.Significance statementGlobal preparedness for pandemic threats requires an understanding of the global variations of spatiotemporal transmission dynamics. Regional differences are important because the local context sets the conditions for the unfolding of local epidemics, which in turn affect transmission dynamics at a broader scale. Knowledge gaps from the SARS-CoV-2 pandemic remain for regions like South America, where distinct sets of viral variants emerged and spread from late 2020 onwards, and where changes in human behaviour resulted in epidemics which differed from those observed in other regions. Our interdisciplinary analysis of the SARS-CoV-2 epidemic in Chile provides insights into the spatiotemporal trends of viral diffusion in the region which shed light on the drivers that can influence future epidemic waves and pandemics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3