Chromogranin A (CgA) Deficiency Attenuates Tauopathy by Altering Epinephrine–Alpha-Adrenergic Receptor Signaling

Author:

Jati Suborno,Munoz-Mayorga Daniel,Shahabi Shandy,Tang Kechun,Tao Yuren,Dickson Dennis W.,Litvan Irene,Ghosh GourisankarORCID,Mahata Sushil K.ORCID,Chen Xu

Abstract

SummaryOur previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer’s disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients. Here, we determined the role of CgA in tauopathies, including AD (secondary tauopathy) and corticobasal degeneration (CBD, primary tauopathy). We found elevated levels of CgA in both AD and CBD brains, which were positively correlated with increased phosphorylated tau in the frontal cortex. Furthermore, CgA ablation in a human P301S tau (hTau) transgenic mice (CgA-KO/hTau) exhibited reduced tau aggregation, resistance to tau spreading, and an extended lifespan, coupled with improved cognitive function. Transcriptomic analysis of mice cortices highlighted altered levels of alpha-adrenergic receptors (Adra) in hTau mice compared to WT mice, akin to AD patients. Since CgA regulates the release of the Adra ligands epinephrine (EPI) and norepinephrine (NE), we determined their levels and found elevated EPI levels in the cortices of hTau mice, AD and CBD patients. CgA-KO/hTau mice exhibited reversal of EPI levels in the cortex and the expression of several affected genes, including Adra1 and 2, nearly returning them to WT levels. Treatment of hippocampal slice cultures with EPI or an Adra1 agonist intensified, while an Adra1 antagonist inhibited, tau hyperphosphorylation and aggregation. These findings reveal a critical role of CgA in regulation of tau pathogenesis via the EPI-Adra signaling axis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3