Stochastic Regression and Peak Delineation with Flow Cytometry Data

Author:

Kearsley Anthony J.ORCID,Parratt Kirsten H.ORCID,Pinheiro Guilherme L.ORCID,Da Silva Sandra M.ORCID

Abstract

AbstractMany modern molecular analysis methods utilize DNA content values as part of the measurement process, and thus, the distribution of genome copies per cell within a population of cells is important. Genome copy distributions can be measured via flow cytometry by thresholding (or “gating”) a subset of cells from which estimates of the targeted properties (e.g., genome copy number) can be calculated. This manuscript introduces a new approach that gives separate estimates of signal and noise, the former of which is used for gating and analysis, and the latter is used to quantify uncertainty. In this approach stochastic regression was used to quantify subpopulations of cells that have distinctly different genome copies per cell within a heterogenous population ofEscherichia coli(E. coli)cells. By separating the signal and noise components, they can be used independently to evaluate measurement quality across different experimental conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3