Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli

Author:

Akerlund T1,Nordström K1,Bernander R1

Affiliation:

1. Department of Microbiology, Uppsala University, Sweden.

Abstract

Escherichia coli strains were grown in batch cultures in different media, and cell size and DNA content were analyzed by flow cytometry. Steady-state growth required large dilutions and incubation for many generations at low cell concentrations. In rich media, both cell size and DNA content started to decrease at low cell concentrations, long before the cultures left the exponential growth phase. Stationary-phase cultures contained cells with several chromosomes, even after many days, and stationary-phase populations exclusively composed of cells with a single chromosome were never observed, regardless of growth medium. The cells usually contained only one nucleoid, as visualized by phase and fluorescence microscopy. The results have implications for the use of batch cultures to study steady-state and balanced growth and to determine mutation and recombination frequencies in stationary phase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference22 articles.

1. Cell division in Escherichia coli minB mutants;Åkerlund T.;Mol. Microbiol.,1992

2. Bacterial growth control studied by flow cytometry;Boye E.;Res. Microbiol.,1991

3. Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology;Boye E.;J. Gen. Microbiol.,1983

4. Bremer H. and P. P. Dennis. 1987. Modulation of chemical composition and other parameters of the cell by growth rate p. 1527-1542. In F. C. Neidhardt J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.

5. Life phases in a bacterial culture;Buchanan R. E.;J. Infect. Dis.,1918

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3